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Problem Definition 
Dimensional characterization of non-rigid parts presents many challenges. For 

example, when a non-rigid part is mounted in an inspection apparatus the effects of 
fixturing constraints are significant. If the part is not used in normal service with the 
same load conditions as during inspection, the dimensional characteristics will deviate 
from reported values. Further, the solution of designing specialized fixturing to duplicate 
“as-installed” conditions does not fully resolve the problem because each inspection 
requires its own methodology. The goal of this project is to formulate the research 
problem and propose a method of assessing the dimensional characteristics of non-rigid 
parts. 

The measured dimension of a rigid component is traceable at some level of 
confidence to a single source (NIST in the USA). Hence the measurement of one 
component of an assembly can be related to the measurement of another component of 
that assembly. There is no generalized analog to this pedigreed process for dimensionally 
characterizing non-rigid bodies. For example, a measurement made on a sheet-metal 
automobile fender is heavily influenced by how it is held during the measurement making 
it difficult to determine how well that fender will assemble to the rest of the (non-rigid) 
car body. This problem is often overcome for specific manufacturing problems by 
constructing rigid fixtures that over-constrain the non-rigid parts to be assembled and 
then performing the dimensional measurement of the contour of each component to check 
whether each meets specification. Note that such inspection measurements will yield 
only an approximation to the assembled shape, which is a function of both the geometry 
and the compliance of the component parts of the assembly. As a result, non-rigid 
components are more difficult to specify and inspect and therefore are more difficult to 
purchase from outside vendors compared to rigid components. The problems are 
compounded as the requirements come to include higher and higher precision. 

The central idea for this project is the concept of a “free shape.” The free shape is 
the geometry of the part when no loads are present. That is, when those loads produced 



by fixturing, gravity and others are not present. Since it is impossible to directly measure 
the free shape, some method for inferring it must be developed. Once the free shape is 
known some metric must be developed for acceptance or rejection of the part. 

Applications 

Within L L NL 
The non-rigid metrology problem is of direct interest to the laboratory in at least 

three ways. First, it has implications concerning the characterization of thin, 
hemispherical shells. Second, it has application to the metrology of thin photomasks for 
extreme-ultraviolet lithography (EUVL). Third, it can help in the inspection of potassium 
dihydrogen phosphate (KDP) crystals in advanced laser systems. It is important to 
industry because it has applications to metrology of sheet-metal parts. 

Metrology of Hemi-Shells 
The Stockpile Stewardship Program demands a better understanding of the 

deformation that occurs in hemi-shells resulting from their manufacture and assembly. 
Hemi-shells are non-rigid bodies, which for example, deform under their own weight and 
are easily deformed by fixtures that hold them during the manufacturing process. In order 
to inspect a hemi-shell, it is constrained in a fixture that “rounds up” the equator of the 
shell and thus purposely removes some of the deformation of the shell that results, for 
example, from non-uniform residual stress. 

Figure 1: Over-constraining Fixture 

Figure 1 illustrates a fixture that over-constrains a hemi-shell. The inspector can 
then compare the measurement of the constrained shell and the drawing of a perfect shell 
and determine, within some uncertainty, whether it is acceptable or not. A number of 
problems arise from using such fixtures. One is that the fixture, which over-constrains the 
shell, imposes ill-defined constraints on the shell. Hence, slight variation in the 
procedure or conditions of the measurement introduces uncertainty into the dimensional 
measurement. In addition, the fixturing and measurement processes that have arisen at the 
different agencies within the DOE complex are unique to each agency and the 
measurement data are not traceable from one institution to another. 



EUVL Photomasks 
EUVL photomasks are high aspect ratio optics subject to deformation by external 

forces. The error budgets for image placement error for EUV Lithography dictate that a 
mounted mask be flat. One contributor to non-flatness in the clamped state is the 
freestanding non-flatness of the mask itself, which is further influenced by the non- 
flatness of the mask substrate. The SEMI P37 specification for EUVL masks contains a 
global P-V flatness value for the unclamped state. While the P-V value does guarantee 
that the mask will perform, producing masks to meet this is very difficult. 

A relaxed specification based on the free-shape that still guarantees performance 
while easing the manufacturing requirements is desirable. For example, if inferences can 
be made on the clamped geometry based on the unclamped geometry then suppliers 
would be able to more easily produce mask substrates. This translates directly into lower 
costs for the mask production. 

KDP Crystals 
Thin, high precision KDP crystals are used in NIF. Crystals are manufactured in 

the constrained condition. The final thickness of the finished crystal is approximately 
l.Ocm. With a width and height of 42 cm, KDP crystals have an aspect ratio that makes 
them very non-rigid. 

The finished crystals are inspected in a vertical, freestanding condition using 
optical techniques. The crystals are then edge constrained for use at a variety of angles 
relative to gravity. The combined effects of gravity loading and constraint induced 
errors turn out to be one of the dominant sources of error affecting the performance of the 
crystal. Extensive modeling and analysis has been performed to better understand these 
effects while attempting to improve on them in the mechanical design. 

A method for assessing the constraint system and the influence of gravity and 
other boundary conditions would greatly improve the ability to predict and/or improve 
performance of NIF KDP crystals. 

Outside L LNL 
Many examples of non-rigid bodies exist in industry. Most any sheet metal part is 

easily deformed under small loads. Space based optics have conflicting goals of stiff and 
lightweight design. 

Sheet Metal 
Sheet metal parts are common. For example, automotive body panels must have 

precise geometry for aesthetic reasons. Elaborate, specialized fixturing devices and 
metrics are used for characterization. A generalized method for assessing the 
dimensional characteristics of the parts would provide for a more flexible metrology 
process. 

Space Based Optics 
One design parameter for space-based optics is total mass. The optics must be 

lightweight to facilitate transportation into orbit. Thus, the option of adding material to 
increase rigidity is not available. Although the operating environment for the optics does 



not require the same rigidity as for earth-based optics, they are manufactured and 
inspected in the same manner. The ability to measure while the optic is under the 
influence of gravity and predict its shape with gravity removed would provide better 
insight into its the future performance. 

Technical Approach 
The method begins with a measurement or me non-nga part as it is exactly 

constrained under well-defined conditions and, in contrast to current convention, is not 
measured in an overconstrained condition. The deformation imposed by the well- 
defmed constraints can then be removed by simulation to predict the shape of the part as 
though it were free from external forces. This condition, which is not physically 
realizable, is then used to decide on the acceptability of the component part and further, 
to estimate the shape of an assembly of non-rigid component parts. The acceptability of 
the part now concerns not just how close the geometry of the freestanding part is to the 
geometry of the ideal part in the specification, but also includes the nature of the forces 
required to make the constraint-free part conform to the specification geometry. A further 
advantage of this approach is that two such components can be assembled to each other 
by simulation because both the geometry and the compliance of the components are 
known and available to the simulation. 

Simulation torcm~ve simulation to add 

fixture. fixtun 
deformation due to inspection deformation due to “vhd‘‘ 

C 

1 

c 
Inspection date 

taken under 
coastraint set 

#l . 

L’  

1 
simulated shape of 

simulatcd shape “Functional Equivalent” 
of “Free State” state (to be compared to 

the specification.) 

Figure 2: Technicrl Approach 

In essence, the part is measured and then compared to specification through the 
use of a “numeric fmture” rather than being measured and then compared to a 
specification through the use of a “hard furture”. The approach is illustrated in Figure 2. 



Method of Modeling or Simulating the Deformation Due 
to Fixturing 

Finite Element Analysis 
Finite element method is the simplest way to model and simulate the deformations 

of thin shells subject to various boundary conditions. The models can be built using 
various elements described in the previous sections. Commercial and homemade finite 
element codes are used to simulate the results for thin shell problems in this project. The 
commercial codes considered for use on this project are Pro Mechanica, ANSYS, 
ABAQUS, and COSMOS. The homemade finite element codes considered for this 
project are Nike, and FEAP (a simple Fortran FEA code). Nike is a finite element code 
that has been developed for internal use at Lawrence Livermore National Laboratory. 
These codes are used to check and verify the consistency of the results of each code 
relative to another. Pro Mechanica, ABAQUS, COSMOS, and FEAP were selected for 
use on this project. 

Close Form Solution 
Closed form solutions were also evaluated for this project. The selection of load 

cases for the actual experiment does not have closed form solutions but simpler load 
cases were evaluated and compared to the results of the FEA. An example of a simple 
load case that has a closed form solution is a cylinder with a uniform pressure applied to 
the inner or outer surface. Comparison of results between this simple load case and the 
FEA results allowed the experimenters to eliminate Pro Mechanica as a viable option for 
this project. Pro Mechanica produced results that were inconsistent with closed form 
results and the other FEA codes. 

Uncertainty in the Process 
In order to increase the usefulness of reported measurement values a statement of 

uncertainty must be included. Thus, the many contributors to the overall uncertainty 
must be assessed. In addition to the typical uncertainties associated with data acquisition 
(hardware), there is additional uncertainty associated with the FEA. A “home grown” 
FEA code was used for this work. Thus, more complete knowledge of the underlying 
operations and the associated uncertainty was realized. Significant contributors to the 
overall uncertainty are given below. 

Material Properties 
Assigning material properties to an element in an FEA study makes the significant 

assumption that the part model being analyzed has the same material property as the 
actual part. It is typically assumed that the parts will be homogeneous and isotropic. In 
most instances these assumptions are not completely accurate. These assumptions result 
in uncertainty in the FEA results. The effect of variation in the material properties on the 
FEA results can be determined. For example, the Young’s modulus is directly 
proportional to deflection. Thus, if the Young’s Modulus varies by 20%, then deflections 
can also vary by 20%. 



Standard tensile tests can accurately measure the Young’s modulus of a material 
to about 1%. The accuracy is worse for determining Poisson’s ratio as a result of the 
uncertainties in measuring lateral displacement. Ultrasonic methods for measuring 
mechanical properties have been explored and results show improved accuracy in the 
determination of mechanical properties. The fundamental principle is measurement of 
ultrasonic velocities generated by a dynamic pressure wave into a material of known 
thickness and measuring the transit time of the emerging acoustic pressure wave. The 
uncertainty in Young’s modulus calculation based on this based is dependent on the 
density of the material and the thickness of the medium. The Young’s modulus’ 
calculated uncertainty based on uncertainties in thickness and density is determined to be 
around 0.4%. This uncertainty is improved to 0.2% with improved density measurement. 
Detailed results for this calculation are given in Appendix A. 

Mesh 
The accuracy of the solution is dependent on the quality of the mesh. The FEA 

convergence is also greatly affected by the mesh quality. The global displacement should 
converge to a stable value and any results of interest should converge locally. A more 
subjective measure of the quality of the mesh is its appearance and ability to visually 
convey the geometry it represents. Typically, the better-looking mesh is better and a bad- 
looking mesh almost always indicates a problem. Equilateral triangles and squares are 
the ideal elements to use with smooth and gradual transitions without skinny, distorted 
elements. The type of elements used (Le. p-elements or h-elements) is also a factor in 
mesh density. The use of higher order p-elements does not require as dense a mesh as 
same h-elements for the same model. P-elements allow for higher edge polynomial 
orders which can improves the representation of the load curvature. 

Boundary Conditions 
Boundary conditions are difficult to model since physical interactions of 

constraints and modeled geometry are complex. For the purposes of experimental 
validation it is possible to design geometry and fixtures to create boundary conditions 
that are more accurately modeled. This has been achieved by producing boundary 
conditions that have very little friction. An exact constraint fixture also greatly reduces 
the unknown forces acting on the model. 

Linear Static Assumption 
Linear static solutions are most common solutions available when using finite 

element analysis. The popularity of this solution often obscures the fact that it represents 
a significant assumption of linear events. Linear event are typical idealized in most 
problems and do not typically exist. However, linearity in thin shell analysis is a good 
assumption because of low-stress condition that is created during bending of the shell. 
Thin shells are used to experimentally validate the process for this work. 

Element Type 
When using finite element analysis different element types can be used to model 

thin shells. Two candidate elements for this work are shell elements and hexahedral solid 



elements. Shell elements typically represent thin-walled structures. They can be 
quadrilateral or trilateral. A quadrilateral mesh is usually more accurate mesh of similar 
density based on trilateral elements. Most preprocessors can mesh a surface with quads 
only or apply a quad dominant mesh where triangles are used only when the mesher 
cannot resolve an area within specified element tolerances. Triangles are acceptable in 
regions of gradual transitions. Linear or first order shell elements are normally planar 
and degrade in accuracy as their initial definition deviates from planar. This is an issue 
only for quad elements because a three-noded triangle must be planar. Higher order shell 
elements can provide accurate results with curved initial geometries. A benefit for using 
higher order elements is that positioning the mid-side nodes on the actual curved 
geometry increases the model's accuracy. P-elements are ideal to represent bi-directional 
curvature and can smoothly represent initial geometry. 

Most first order triangle element are only capable of calculating a single strain 
value across the entire element. Consequently, they are known as constant strain 
elements. This limitation can lead to overly stiff results under a given load as localized 
strain gradient will be difficult, if not impossible, to capture. They do provide adequate 
results when used on flat or gently curving surfaces with minimal strain variance across 
the span. Linear quad elements have a linear strain distribution from one node to the next 
so they are better at capturing localized stresses. Adding mid-side nodes to both these 
elements improves their strain distribution by a polynomial order. 

///-Condition Stiffness Matrix 
Ill-condition stiffness matrix results in solutions that could be an order of 

magnitude different in value from a few percent change in the stiffness coefficient matrix. 
In matrix terminology, the rows of an ill-conditioned matrix are almost linearly 
dependent. For a 2 by 2 systems, this means that the second row of the coefficient matrix 
is almost a scalar multiple of the first row. In structural terminology, a major cause of ill- 
conditioning in practical finite element models is a large different in stiffness with the 
stiffer region being supported by the more flexible region. This circumstance shifts 
essential numerical information to the latter digits of stiffness coefficient Kij. These 
latter digits may be so few in number that the solution in worthless. Physically, the stiffer 
region has one or more displacement states that are almost rigid-body motions within a 
more flexible supporting structure. The limiting case in a structure without any supports: 
it has only rigid-body motion in static analysis, and its stiffness matrix is singular. 

In this particular study this problem can be encountered when a flexible shell 
element is modeled and it is connected to a stiff boundary condition. This can result in 
high unrealistic deflections at the node. This problem can be mitigated by distributing 
the loading at number of nodes around the boundary condition as oppose to a single node 
connection. 

A numerical measure of ill-conditioning in a coefficient matrix is the condition 
number. A large condition number denotes an unstable solution and warns that a finite 
element solution may contain appreciable error. The condition number of matrix K 
(stiffness matrix) is simply defined as (l), 

C(K)=- Amax 

'min 



where h,,, and &in are the largest and smallest eigenvalues of matrix K. It can be shown 
that for each power of ten in the ratio hmaxlhmin, the operations of equation solving lose 
about one digit of accuracy in the displacement mode associated with hmin (Cook, 1989). 
The estimated accuracy loss is (2). 

- log,, c . (2) accurate digit loss = log,, - - 
a m i n  

For example, for C(K)=105, if computer has seven-digit capacity, only two digits 
are reliable in the computed displacements. With sixteen-digit capacity, eleven accurate 
digits remain. 

Uncertainty Management 
An effective measurement requires management of uncertainty. Once the 

uncertainty contributors are identified steps can be taken to minimize their magnitude. 
For this work action is required on both the data acquisition (hardware) and analysis 
(software) sides. On the hardware side, multiple measurements are taken and the 
fixturing forces and displacements are recorded. To facilitate the analysis, the cylinder is 
measured close to its free shape the material properties are measured. 

Table 1: Uncertainty Contributors 

Table 1 illustrates some uncertainty contributors and suggestions for remedying 
them. 

Experimental Demonstration 
A copper thin walled cylinder was manufactured under carefully controlled 

conditions. A cylinder was chosen because of its manufacturability and because it can be 
oriented so that gravity has little effect. The goal of the design was to reduce the 
uncertainty in the measurement to small values compared to those for FEA. 
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Figure 3 shows the cylinder at an intermediate step in the manufacturing process. 
A fixturing device was built to exactly constrain the cylinder. The design facilitated 
readings of both displacements of the cylinder and reaction forces at the constraints. 

The actuators on the fixturing device deformed the cylinder approximately 2% of 
its wall thickness over 15 steps. Measurements of the displacement were obtained by 
placing the entire fixturing device on a Trope1 CylinderMaster 25 cylinder inspection 
device. 



Figure 5 illwtr@cs the 
fixture contacted the cylinder at 

Measurement Data Analysis 
The goal of the numerical simulation 

configuration for the test cylinder from a mental data. The 
experimental data was determined based on a set of sequential optical measurements. The 
experimental data was determined follows: first, the test cylinder was set on a loading 
fixture and an initial radial deviation map is obtained, denoted as a. The test cylinder 
was then incrementally displaced at three points on the outer surface of the cylinder and 
the corresponding radial deviations are recorded. A maximum radial displacement of 
approximately 2% of the wall thickness is imposed over 15 increments. 

Figore 6: M - D b p k e u m t  Curve at 90" Bopadvy 
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Figure 7: Load-Displacement Curve at 210" Displacement Boundary Condition 
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Figure 8: Load-Displacement Curve at 330" Displacement Boundary Condition 

A plot of the radial force versus radial displacement for each of the three 
boundary conditions is shown in Figure 6 through Figure 8. As shown from Figure 6 
through Figure 8 the response is linear and returns to its initial state to within the 
uncertainty of the optical measurements. Given the linearity and the inherent elasticity of 
the load-deflection curves a linear-elastic shell formulation was used for the numerical 
simulations. In addition, it is also assumed that the elastic material properties and wall 
thickness are known and constant throughout the deformation. 

An overview of the procedure used to determine the stress-free state is given below. 

The initial finite element discretization was determined by superimposing the 
experimental radial deviation map in the unloaded configuration, AXo, to the 
geometry of a "pure" right circular cylinder, XO. The resulting initial finite 
element discretization is denoted as X = XO + AXo. 



Figure 9: Finite Element Mesh Discretization, 256x35 

Note the grid resolution of the experimental data and the finite element 
discretization coincide, specifically the grid consists of 256 data points around the 
circumference and 35 data points along the longitudinal axis of the cylinder, see 
Figure 9. 

0 Since the discretization of the experimental data and the finite element mesh 
coincide the prescribed normal displacement boundary conditions correlate 
directly to the experimental data. 

Figure 10: Locations of the Radial Boundary Conditions 

The loading fixture imposes a prescribed normal displacement (over 15 
increments), of approximately 2% of the wall thickness, to the outer surface of the 
cylinder at three locations equally spaced. Figure 10 illustrates the radial 
displacement boundary conditions. 

0 Given the initial finite element discretization, X, and the three displacement 
boundary conditions (based on the experimental data) contour maps of the radial 
displacement for the experimental and a preliminary finite element simulation can 
be plotted. 
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Figure 11: Contour Plot of Radial Displrrcements for the Experimental Data and 

Initid Mnite Element Discretization. Units are mm. 

Figure 11 shows the contour maps. 
numerical results are based on the same initial configuration. 

Note that both the experimental and 

Recall the goal is to minimize the error between the deformed coordinates of the 
finite element discretization to that of the experimental data. To obtain this 
minimization a simple coordinate update scheme shown below is utilized. 

1. Initialize iteration counter k=O 

2. Set current coordinates x&+l) = x 
3. Solve for the nodal displacements uOL+l), 

where K is the tangent matrix and R is the residual vector. 

4. Update iteration counter k=k+l 
5. Update the coordinates by setting = d') + (AX -&)) where AX is 

the difference in the initial and final configurations (loading portion of the 
curve) of the experimental data. 

6. Solve for the displacements, u('+'), as 

7. Check for convergence 
t = p " 1  - u(')i 

8. If (DTOL) repeat from (4) or else finish and report x=u@+') 

0 Once convergence is achieved then the updated coordinates, x, are stored. Note 
using an initial finite element discretization with coordinates, x, and imposing the 



experimental displacement boundary conditions the final deformed configuration 
of the numerical model will approximate the deformed configuration of the 
experimental data to within the uncertainty of the data. The stress-free 
configuration is then obtained by unloading the radial displacement boundary 
conditions or simply x. 

ppe\m 12: ~ o e d o r v ~ b ~ t r d t i ~ ~ ~  m ~ s r w -  mh ~aithl ~baitc 
EkDlcllt-.dwfetrarFrae)DLclllctb.tba 

A three-dinnsional contOuT map of the deformed radial coodmte s for the 
experimental, initial (i.e. initial iteration) finit0 element d y s i s ,  and the final (i.e. 
converged) f d t e  element analysis am shown in pisure 12. 
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In addition, Figure 13 shows the error in the deformed radial coordinate for the 
cases above. 

Figure 14 depicts the initial configurations for the experimental data and the 
computed stress-free finite element data. 
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To assess the uncertainty of the optically measured cylinder data to that of a 
"perfect" or "pure" cylinder and the stress-& mnfiguration developed h m  the fdte 
element analysis several scalar measures were utilized. 

T a b k 2 : s c S l s r M ~  

Description Nl N* El 

Comparison of the experimental and finite 5 .467~10~ 1.158 x104 -- 

Comparison of the experimental and pure 1.883xlO-' 5.156~10-' -- 

(mm) (-1 (N-mm) 

element data 

cylinder data 
Stress-free finite element configuration to -- -- 7.632~ l@ 
initial experimental configuration ~~ 

initial pure cylinder configuration 
Initial experimental configuration to pure -- -- 2.2 17x 10" 
cylinder mnfigutation 

Stress-free finite element configuration to - -- 

Table 2 lists the various scalars used, specifically an infinity norm defined as (3), 

where Rij is the deformed radial coordinates associated with the discretization, the 
superscript exp denotes the experimental data, feu denotes the final finite element data, 
and pure denotes the data for a pure or perfect cylinder. The 2-norm defined as (4), 



and the last scalar measure is an energy term, E , ,  which is defined as the work required 
( ie . ,  radial force * radial distance) to deform a given initial configuration (e.g., the pure 
cylinder configuration) to another initial configuration (e.g., the stress-free finite element 
configuration). 

Acceptance of Non-Rigid Parts 
In the case of conventional rigid-body inspection, the measurement of a part is 

directly compared with drawing of ideal part and, if the measurement with its uncertainty 
falls within the specified drawing tolerances, the part is declared acceptable. The implicit 
assumption is that the part is not deformed in inspection, assembly or use. For non-rigid 
parts, the same basic acceptance approach applies, but a predicted shape rather than the 
measured shape is used as a comparison with/to the ideal shape given on a drawing. 
Referring to Figure 2, upon “removing” the constraints imposed during measurement, a 
new set of constraints is imposed upon the simulated free-state shape that reflect how the 
part is to constrained in its functional state. The resultant shape with its associated 
uncertainty is then compared to the specification, which is still often embodied as a 
drawing. A decision must now be made whether the part is acceptable or must be 
rejected. Thus the acceptance of a non-rigid part contains the extra steps of removing the 
measurement constraints and applying functional constraints. In practice, the two steps 
could be combined, but keeping them separate makes for clearer discussion. 

Consider first the degenerate example of a space-based optical surface that is 
mounted to exactly constrain its six rigid-body degrees of motion. It is specified to take a 
well-defined shape, within an allowable tolerance, which is given by a drawing. While 
this case is conceptually identical to the rigid-body case, it is in practice quite different. 
The difference between the rigid body and the non-rigid part lies in the additional 
uncertainties that arise in using FEA to predict its free-state shape, that is, the shape it 
will take in space. Here, the free-state shape and the shape it takes in service (i.e., the 
functional shape) are the same. 

Consider as a second case, the hemispherical shell described above, whose outer 
contour is required to be spherical to some tolerance when it is assembled to a 
hemispherical mate. In current practice, in order to inspect a hemishell, the equator is 
forced to be round, then the diameter is measured and the outer contour is measured in 
this constrained state. In essence, the rounding ring is used to bring the part into its 
functional state, that is, the assembly process is “simulated” by forcing a “rounding ring” 
over the equator of the part. In this case, requiring the free-state shape of the shell to be 
spherical would cause the rejection of many useable and functional parts. As described 
above, the problem with using a rounding ring is that it introduces unknown constraint 
conditions on the part that are quite different from what it may see in assembly. For 
example, the process of forcing the rounding ring over the equator tends to trap friction 
between rounding ring and hemishell, which results in deformation of the outer contour. 
Thus a perfect part may be rejected because of the friction associated with using the 
rounding ring. Also, any mismatch in the circumference of the rounding ring and the 
length of the equator of the part causes significant radial forces and moments about the 
equator and concomitant deformation of the outer contour. 



An alternative approach to using a hard fixture to round up the equator is to use a 
“soft” fixture, which does not suffer a number of the shortcomings of the hard fixture. 
The soft fixture is a finite element simulation of the ideal hard fixture. The soft fixture 
simply represents a hard fixture that is free of friction between the fixture and part free of 
any mismatch between the length of the equator of the part and the circumference of the 
fixture. 

Consider as a third case, the photomasks described above, which are required to 
be flat to some tolerance as they are sequentially mounted in an exposure tool. In this 
case, requiring the free-state shape of the photomask to be flat is again overly restrictive 
because the mounting process has some capability to flatten the mask. Because a 
photomask is almost planar, it can be measured with its patterned surface in a vertical 
plane and thus the deformation due to gravity becomes extremely small. Hence, the 
inspected state is very close to the free-state shape. (This is unlike the hemishells, which 
sag under gravity regardless of how they are oriented or fixtured.) However, the 
photomasks for EUVL are used in vacuum with their front surface in a horizontal plane. 
The gravity-induced sag of a photomask on three-point support is approximately ten 
times the allowable departure from flat. Thus the mask is mounted against a flat-faced, 
electrostatic chuck. The chuck therefore has a limited capability to “flatten” the mask. 

One method of inspecting photomasks is to mount them to an “inspection chuck”, 
one that replicates the actual chuck in the exposure tool, and then measure the resultant 
flatness. As with the hemishell inspection, the hard fixture suffers from practical 
shortcomings. One example is that if a particle becomes trapped between the chuck and 
the photomask, then the deformation that is caused by the particle would cause the 
rejection of a good photomask. 

An alternative approach to using a surrogate chuck, i.e., a hard fixture, to flatten 
the photomask for inspection is again to use a “soft” fixture. The soft fixture is a model 
of the flattening ability of the chuck. In this case, a FEA is performed of constant 
pressure acting to deform the photomask against a rigid, flat plane. Applying this model 
to a freestanding photomask allows the inspector to determine whether the mask will be 
flattened within the flatness specification and hence accept a mask, or whether it is 
deformed such that it cannot be flattened, in which case it should be rejected. 

As a fourth example, reconsider the case of the assembly of two hemishells into a 
spherical shell, that is, the assembly of two non-rigid parts. Here, it is difficult to 
determine, a-priori, if the resultant assembly will meet a geometric specification. The best 
way is to perform the assembly and then inspect it. If the inspection fails, it is difficult to 
diagnose the cause. 

Conclusion 
The problem of metrology of non-rigid objects is complex. There is no pedigreed 

process as with rigid artifacts. The problem is encountered in normal industrial 
operations such as sheet metal processes but often addressed in non-generalizable 
methods. Further, it is encountered in precision engineering because, at some level of 
precision, everything is non-rigid. 

This work provides new insight into the metrology of non-rigid objects. The 
research problem has been identified - a significant contribution in itself. A method to 
address the problem was formulated and demonstrated experimentally on a thin walled 



copper cylinder. The free shape was determined and several acceptance metrics 
computed. 

Assessing the uncertainty in the non-rigid metrology process is a complicated 
issue. In addition to the typical uncertainty associated with the data acquisition there is 
uncertainty introduced with the computational analysis. Factors contributing to the 
overall uncertainty were identified and the relative contributions for many of them were 
quantified. 

The results of this work have applications in several areas. At LLNL, the results 
can be used by EUVL for photomasks. NIF can also benefit by using the techniques to 
characterize KDP crystals. The original motivating problem, metrology of hemi-shells is 
possible, but not currently a priority with the customer. The clear posing of the research 
problem makes the issue more salient. This may lead to the desirable outcome of 
increased industrial research in the area. 


